02-05 March 2023, **Sofitel Dubai** The Palm Jumeirah Dubai

Knowledge Graphs on Steroids, with Natural Language Queries

Accionlabs

Dr Prof. Bhushan Bonde

Innovation Dev Head Prof. Comp Biology (AI/ML and Quantum Computing) Scientific Data Officer

Dr. Bhushan Bonde leads the Innovation Development for Pharmaceutical R&D. He received Ph.D. in Systems Biology and Mathematical Modelling, with an interdisciplinary background in Computational biology, Biotechnology and Mathematical Biology from Oxford (2006).

He also had an interdisciplinary M. Tech in Bioprocess technology/Chemical Eng. (2001) and Bachelor of Pharmacy (1998) and had been working across healthcare and R&D Pharma-IT Industry, University and Government Research Institutes with 20 years of experience in Computational Biology.

Table of Contents

Accionlabs

Introduction to Knowledge Graphs

Advantages of KG

Use cases

KG Biological network

ChatGPT

Summary

Knowledge Graphs

Knowledge Graphs and Data Mesh : Introduction

Knowledge graphs are special graph with entities:

between the entities.

Knowledge Graphs (KG) enable

- efficient means of **data management**,
- Compact storage, and retrieval with almost no data duplication,
- provide a single snapshot of the data held by the organisation.
- The added benefit of Graphs efficient, impactful visualisation of the data

Pattern queries : Cypher

MATCH (p:Person)-[:LIVES_IN]->(c:City), (p:Person)-[:NATIONAL_OF]->(EUCountry) **RETURN** p.first_name, p.last_name, c.name, c.state

Accionabs

• objects, events, or concepts that are interlinked by certain knowledge or relations

Graph databases vs Relational and NoSQL databases

Non-relational (NoSQL)

Document Key-value		Graph Mesh	Relational Databases	NoSQL Databases
$ \begin{array}{c} \bullet \\ \bullet \\$	Data Storage	Graph Storage Structure	Fixed, predefined tables with rows and columns	Minimal connected data support at the DB level
Graph Wide-Column	Data Modeling	Flexible Data Model/No schema	Schema model to be developed from a logical model (Data Normalisation)	No schema but may not be enterprise architectures/security
	Query Performance	High performance regardless of number and depth of connections	Data processing speed slows with number of (inner/outer) joins	Performant but Relationship must be created at the application level
	Query Canguage Caph Coud	Cypher : native graph query language (GraphQL) /SparQL	SQL : complexity grows as the number of joins increases	Different query languages; None is tailored to express relationships
Azure Cosmos DB Relational (SQL)	entDB Transaction Support	Retains ACID transactions	ACID transaction support	BASE transactions prove unreliable for data relationships
	Processing At Scale	Inherently or highly scalable for pattern-based queries	Scales through replication, but it's slow, costly	Scalable, but data integrity is trustworthy
ORACLE MUSQL				

Advantages of KGs

Knowledge graphs have distinct advantages over the rational and other no-sql technologies: • It combines siloed data sources, both from structured and unstructured databases.

- decision making.
- KGs also convert tables to networks : reveals true data pattern
- data by leveraging
 - data integration,
 - advanced analytics (from clustering to shortest path and newer link prediction)
 - deep learning with state of art Graph Neural Network (GNN) approaches

• It provides summary and insights, community or clusters which are very important for

• KG represents the holistic visualisation of the depth, breadth and diversity knowledge of

Accion INNOVATION Sumit 2023

Use cases

Whats wrong with New Drug Discovery Research?

- Overall Timescale : 12 to 15 years / drug

Knowledge Graph : Biological Entities

Ref: Hasan, Bonde et.al Drug Discovery Today (2012) Volume 17, Numbers 15/16, 869-874

Accionabs

Biological entities ('nodes') of interest for drug discovery with their associations as Relationship ('edges')

- A molecular activity;
- **B** physical binding;
- **D** database repository;
- **E** gene expression;
- **G** genetic association;
- K knockout phenotype;
- L literature-based including ontologies and co-citations;
- **R** metabolic reaction;
- S side effect.

© 2023 Accion Labs

11

KG: Disease landscape for Better Health and Drug Discovery

Ref : Goh et al. The human disease network, Proc Natl Acad. Sci USA, 2007, 104, 8685-90 © 2023 Accion Labs

Accionlabs

- Barabási lab (~2007) reported network-based disease analysis provides novel insights
- Most diseases share a ${\bullet}$ common target (power law) : Common disease are well connected
- Neglected disease (bottom ${\bullet}$ row) do not share common target or not well studied yet
- This was the first systematic effort in graph mining Gene-Disease network data

Limitation:

- Despite its novelties, its only qualitative in prediction capabilities
- No direct use/application possible in drug discovery
- Limited only to Gene and Diseases

KG: (Biological) Data Lakes to Data Mesh

Bio Multiverse : Knowledge Graph for drug repositioning

Building the Knowledge Graph : Life-cycle

Knowledge Graph – Full Stack

Impact of Knowledge Graph and Data Mesh

regions as possible - but the project is still far from complete.

Epigenetics landscape

Accionabs

Use of genome-wide association studies for drug repositioning

• Ref : Sanseau et. al., Nature Biotechnology 30, 317–320 (2012)

Large Language Models (LLM)

© 2023 Accion Labs

KG: Disease landscape for Better Health and Drug Discovery

Which anatomies express migraine associated genes?

```
MATCH path =
(n0:Disease)-[:ASSOCIATES]-(n1)-[:PARTICIPATES]-(n2:Biolog
WHERE n0.name = 'migraine'
WITH
[size((n0)-[:ASSOCIATES]-()),
 size(()-[:ASSOCIATES]-(n1)),
 size((n1)-[:PARTICIPATES]-()),
 size(()-[:PARTICIPATES]-(n2))
] AS degrees, path, n2
WITH
 count(path) AS PC,
RETURN
 anatomy_id, anatomy_name, PC
LIMIT 5
```


gicalProcess)				
	anatomy_id	anatomy_name		
	UBERON:0001645	trigeminal nerve		
	UBERON:0001785	cranial nerve		
	UBERON:0002363	dura mater		
	UBERON:0002925	trigeminal nucleus		
	UBERON:0002360	meninx		

KG: Disease landscape for Better Health and Drug Discovery

Q1	Give me all oxidoreductase inhibitors active <100 nm in human and mouse
Q2	For a given compound, what is its predicted secondary pharmacology?
Q3	Given a target find me all actives against that target, and find and/or predict the polypharmacology of actives
Q4	For a given interaction profile, give me similar compounds
Q5	For molecules that contain substructure X, retrieve all bioactivity data in serine protease assays
Q6	For a specific target family, retrieve all compounds in specific assays
Q7	For a target, give me all active compounds with the relevant assay data
Q8	Identify all known protein-protein interaction inhibitors
Q9	For a given compound, give me the interaction profile with targets
Q10	For a given compound, summarize all similar compounds and their activities
Q11	Retrieve all data for a given list of compounds depicted by their chemical structure (SMILES) with options to match stereochemistry

- For a given compound, which of its targets have been patented in the Q12 context of a disease?
- Q13 For disease X, which targets have ligands in different stages of the development process with publications and/or patents describing these compounds?
- Q14 Target druggability: compounds directed against target X have what indications? Which new targets have appeared recently in the patent literature for

a disease?

- Q15 Which chemical series have been shown to be active against target X? Which new targets have been associated with disease Y? Which companies are working on target X or disease Y?
- Q16 Targets in Parkinson's disease or Alzheimer's disease are activated by which compounds?
- For my specific target, which active compounds have been reported in Q17 the literature?
- For pathway X, find compounds that agonize targets assayed in only Q18 functional assays with potency <1 MM
- For the targets in a given pathway, retrieve the compounds that are Q19 active with more than one target
- For a given disease, retrieve all targets in the pathway and all active Q20 compounds hitting those targets

Which model you prefer ?

Artificial Intelligence : Large Language Models- GPT-3

Dataset	Quantity (tokens)
Common Crawl (filtered)	410 billion
WebText2	19 billion
Books1	12 billion
Books2	55 billion
Wikipedia	3 billion

Accionlabs

Larger models are learning efficiently from in-context information

SCIFORCE

GPT-3 – Augmented learning : metadata and schema training

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Translate English to French:	← task description
sea otter => loutre de mer	← examples
peppermint => menthe poivrée	\leftarrow
plush girafe => girafe peluche	\leftarrow
cheese =>	← prompt

Query: What is the count of proteins?

Output: MATCH (p:Protein) RETURN COUNT(DISTINCT p)

Query: What is the count of anatomy objects?

Output: MATCH (n:AnatomyObject) RETURN count(n)

GPT-3 – Augmented learning

Privacy and IP preserving layer was added by removing sensitive info ...eg, chemical names, IP sensitive info and GDPR compliance, using Data Anonymization tool

Accionlabs

Bhushan Bonde Yesterday 12:36

Neon Search

ETFD SLC47A2

GPT-3 – Challenges and learning

Fixing this issue is challenging, as:

- (1) during RL training, there's currently no source of (ground) truth;
- (2) (overfitting) training cautiously causes it to decline questions that it can answer correctly; (3) Interpolation vs extrapolation : supervised training misleads the model -> what the model knows, rather than what the it can interpret from the data

answer correctly.

•Biased toward verbosity and overuses certain phrases, biases in the training data over-optimization issues.

ChatGPT sometimes writes plausible-sounding but incorrect or nonsensical answers.

•ChatGPT can be a bit sensitive to tweaks to the input phrasing, given one phrasing of a question, the model can claim to not know the answer, but given a **slight rephrase**, can

E.g. trainers prefer longer answers that look more comprehensive) and well-known

Summa

Knowledge Graphs are special graph

- Entities or Nodes: objects, events, labels or concepts Relationships: Interlinked by certain knowledge or relations between the entities...
- Knowledge Graphs (KG) enable efficient means of data management, storage, and retrieval
- Almost no data duplication, thereby providing the single snapshot of the data held by the organisation.
- The added benefit of Graphs are they allow efficient, impactful visualisation of the data.

Bhushan Bonde (bhushan.b@e-zest.com)

Special thanks to Shrijeet Polke – E-Zest Jaywant Deshpande – E-Zest E-zest (Knowledge Graph/LLM) team

