
© 2023 Accion Labs

02-05 March 2023,
Sofitel Dubai
The Palm Jumeirah
Dubai

© 2023 Accion Labs© 2023 Accion Labs

Finite State Machines to Model and
Build Complex User Interfaces

© 2023 Accion Labs

Vaibhav Satam

Head of frontend application COE

Software architect with extensive experience in designing
complex frontend applications.

He enjoys working with startups and enterprises to
identify challenging problems and opportunities that can
be solved with software and innovation.

© 2023 Accion Labs

Kejal Shah

Tech Architect

Technical Architect with varied experience in frontend
applications.

Dedicated and passionate about creating diverse
innovative solutions.

© 2023 Accion Labs

Table of Contents
Introduction

Problem Definition

Conventional Solutions

Innovation Approach

Case Study

Demo

© 2023 Accion Labs© 2023 Accion Labs

Introduction

© 2023 Accion Labs© 2023 Accion Labs

Problem Definition

© 2023 Accion Labs

Increasing nature of frontend complexity

• In the middle of the 2000s, the web was mostly composed of static web pages

• As time went on, the sites we built started to grow in complexity — with features like blog posts and

forums

• With each evolution of web UI, we started to build increasingly complex websites and applications

• The web today requires interfaces that are far more complex and event driven

Complexity of User Expectations

© 2023 Accion Labs

Increasing nature of frontend complexity

• In the middle of the 2000s, the web was mostly

composed of static web pages

• As time went on, the sites we built started to grow

in complexity — with features like blog posts and

forums

• With each evolution of web UI, we started to build

increasingly complex websites and applications

• The web today requires interfaces that are far more

complex and event driven

Complexity of User Expectations

© 2023 Accion Labs

Evolution of Web User Interfaces

2023

2023

© 2023 Accion Labs

• User Interfaces need to address a variety of complexities such as

• Accessibility
• Performance
• Compatibility with multiple devices, browsers and operating systems
• Varying degree of connectivity

• User Interfaces need to be more Event Driven

• Form based UI is too cumbersome for users

• UI needs to mimic games, where complexity is hidden under the surface

• UI need to respond to user events intelligently, and be state aware

Increasing nature of frontend complexity

Dealing with Complexities of User Interfaces

© 2023 Accion Labs

Increasing nature of frontend complexity

Accessibility Performance Compatibility with multiple devices,
browsers and operating systems

Varying degree of connectivity

Dealing with Complexities of User Interfaces

User Interfaces need to address a variety of complexities such as

User Interfaces need to be more Event Driven

Form-based UI is too
cumbersome for users

UI needs to mimic games, where
complexity is hidden under the surface

UI need to respond to user events
intelligently, and be state aware

Speedometer

Responsive
design

Data
connectivity

© 2023 Accion Labs

Increasing nature of frontend complexity

Accessibility Performance Compatibility with multiple devices,
browsers and operating systems

Varying degree of connectivity

Dealing with Complexities of User Interfaces

User Interfaces need to address a variety of complexities such as

User Interfaces need to be more Event Driven

Form-based UI is too
cumbersome for users

UI needs to mimic games, where
complexity is hidden under the surface

UI need to respond to user events
intelligently, and be state aware

© 2023 Accion Labs

Example of Event Driven v/s Conventional UI

Example: UI need to respond to user events intelligently, and be state aware

© 2023 Accion Labs

Example of Event Driven v/s Conventional UI

Example: UI need to respond to user events intelligently, and be state aware

Logged out

After 1 minute

Active

activity

After 3 minutes

Auto Logged Out

Idle entry/ warn user about auto logout

Log In

Log Out Logged In

© 2023 Accion Labs© 2023 Accion Labs

Conventional State
Management

© 2023 Accion Labs

Conventional Solutions - State Management

Over the last several years, there has been a ton of innovation in the realm of State Management; from Redux to
MobX to Vuex and beyond.

These technologies did not provide a way to design state, but just to manage state

Event driven UI requires much more complex design of states

© 2023 Accion Labs© 2023 Accion Labs

State Machines -
Simplifying Complex UI

© 2023 Accion Labs

A brief introduction to state machines and statecharts

● Finite Number of States
○ A state machine, per the academic definition, is any abstract machine that can be in exactly one of a finite

number of states at a given time.

● State Charts
○ With statecharts, we can model each discrete piece of logic in our application with a state machine, then

visualize how each of those pieces fit together to form a complete application.

● State Machines for Javascript
○ State machines have been a mainstay in other areas of computer programming for many, many years,

primarily due to their predictability. They’ve only recently started to make their way into the zeitgeist of
javascript developers.

© 2023 Accion Labs

A brief introduction to state machines and statecharts

● State Machines for Complex Use Cases
○ NASA uses state machines to model the Space Launch System solid rocket boosters. Video game developers

have leaned on state machines for decades.

● State Machines for Design and Modeling
○ State machines provide clear instructions on when and how that state should change, giving strong control

over the behavior of applications.

© 2023 Accion Labs

A brief introduction to state machines and statecharts

Finite
Number of

States

A state machine, per
the academic

definition, is any
abstract machine

that can be in
exactly one of a
finite number of
states at a given

time

State
Machines

for
Javascript

State machines have
been a mainstay in

other areas of
computer

programming for
many, many years,

primarily due to
their predictability.

They’ve only
recently started to

make their way into
the zeitgeist of

javascript
developers

State
Machines

for Complex
Use Cases

A state machine, per
the academic

definition, is any
abstract machine

that can be in exactly
one of a finite

number of states at a
given time

State
Machines
for Design

and
Modeling

With statecharts, we
can model each
discrete piece of

logic in our
application with a

state machine, then
visualize how each of

those pieces fit
together to form a

complete application

State Charts

With statecharts, we
can model each
discrete piece of

logic in our
application with a

state machine, then
visualize how each
of those pieces fit
together to form a

complete application

© 2023 Accion Labs

Modeling complex user interfaces with finite state machines

Here are a few specific ways that FSMs can be useful for modeling complex user

interfaces:

Describing the different states of the interface

A user interface can have many different states, depending on factors like user

input, system state, and external events. FSMs provide a way to formally define

these different states and how they relate to each other.

Defining the events that trigger state transitions

In an FSM, each transition between states is triggered by a specific event. By

defining these events explicitly, designers can ensure that they have considered

all the possible ways that the interface might change state.

Supporting testing and debugging

FSMs provide a clear and formal representation of the behavior of the user

interface. This can be useful when testing and debugging the interface.

© 2023 Accion Labs

Modeling complex user interfaces with finite state machines

Here are a few specific ways that FSMs can be useful for modeling complex

user interfaces:

Describing the different states of the interface

A user interface can have many different states, depending on factors like

user input, system state, and external events. FSMs provide a way to

formally define these different states and how they relate to each other.

Defining the events that trigger state transitions

In an FSM, each transition between states is triggered by a specific event.

By defining these events explicitly, designers can ensure that they have

considered all the possible ways that the interface might change state.

Supporting testing and debugging

FSMs provide a clear and formal representation of the behavior of the user

interface. This can be useful when testing and debugging the interface.

© 2023 Accion Labs

States

To draw a statechart for the process of a light bulb, there are two states that would first come to mind:

A light bulb is either lit or unlit at all times. The light bulb cannot be both lit and unlit at the same time.

© 2023 Accion Labs

States

To draw a statechart for the process of a light bulb, there are two states that would first come to mind:

A light bulb is either lit or unlit at all times. The light bulb cannot be both lit and unlit at the same time.

UNLIT LIT

© 2023 Accion Labs

Transitions and events

How the light bulb goes between lit and unlit is through transitions. A transition is caused by an event

that results in the change of state.

© 2023 Accion Labs

Transitions and events

How the light bulb goes between lit and unlit is through transitions. A transition is caused by an event

that results in the change of state.

UNLIT LIT

Turn On

Turn Off

© 2023 Accion Labs

Initial state

Any process that has states will have an initial state, the default state the process exists in until an event

happens to change the process’s state.

© 2023 Accion Labs

Initial state

Any process that has states will have an initial state, the default state the process exists in until an event

happens to change the process’s state.

 Waiting

© 2023 Accion Labs

Final state

Most processes with states will have a final state, the last state when the process is finished. The final

state is represented by a double border on the state’s rounded rectangle box.

© 2023 Accion Labs

Final state

Most processes with states will have a final state, the last state when the process is finished. The final

state is represented by a double border on the state’s rounded rectangle box.

LIT

Turn On

Waiting

 Waiting

© 2023 Accion Labs

State Machine Tools

Tools to use finite state machines to model complex user interfaces

● Figma
Figma includes a plugin called "States," which allows to define states and transitions for different
components of your design.

● QT Designer
QT Designer is a graphical tool for designing user interfaces in the QT framework. It includes
support for designing and simulating finite state machines,

● Xstate
XState is an open-source JavaScript library for creating and managing finite state machines which
provides a declarative syntax for defining states and transitions.

● Robot
Robot is a 1kb sized javascript library inspired by Xstate.

© 2023 Accion Labs

State Machine Tools

Tools to use finite state machines to model complex user interfaces

Figma includes a plugin
called "States," which
allows to define states
and transitions for
different components of
your design.

QT Designer is a graphical
tool for designing user
interfaces in the QT
framework. It includes
support for designing and
simulating finite state
machines

XState is an open-source
JavaScript library for
creating and managing
finite state machines
which provides a
declarative syntax for
defining states and
transitions

Robot is a 1kb sized
javascript library
inspired by Xstate

© 2023 Accion Labs

XState - Modeling user interfaces with Javascript

XState is an open-source JavaScript library for creating and managing finite state machines in web applications. It provides a
declarative syntax for defining states and transitions, and includes features for hierarchical states, parallel states, and history
states.

© 2023 Accion Labs

XState - Integrated into Web Application

© 2023 Accion Labs© 2023 Accion Labs

Advantages of using State Machines

● Predictability

○ Find design bugs early

○ Reduce implementation bugs

○ Configuration driven Actions

○ Ease of Changes to States and Actions

● Observability

○ Have a clear and automatable piece of documentation of the

interface for all members of the development team

○ Ease of Testing

● Simplicity

○ Iterate on features faster and more reliably

○ Visualization tools provide ease of design of complex states and

actions

© 2023 Accion Labs© 2023 Accion Labs

Examples

© 2023 Accion Labs

NextGen Wealth Management and Banking App

https://docs.google.com/file/d/1H77ptF2dJoX3sBqbDIEfGdBD2r-eLbwG/preview

© 2023 Accion Labs

NextGen Wealth Management and Banking App

https://docs.google.com/file/d/1H77ptF2dJoX3sBqbDIEfGdBD2r-eLbwG/preview

© 2023 Accion Labs

E-Commerce App

Large American public utility company
that operates in the United States and
Canada which provides safe, clean,
affordable, and reliable water services to
our customers to make sure we keep their
lives flowing.

Here is how we used a finite state machine
to model their checkout process:

• The initial state of the checkout process is
the shopping cart. The user has the
option to proceed to
checkout, which triggers a transition to
the "enter shipping information" state.

• In the "enter shipping information" state,
the user can either enter their shipping
information or go
back to the shopping cart. If the user
enters their information and clicks
"continue," the state transitions to "enter
payment information." If the user goes
back, the state transitions back to the
shopping cart.

© 2023 Accion Labs

E-Commerce App

• In the "enter payment information" state,
the user can enter their payment details
or go back to the previous step. If the user
enters their payment details and clicks
"continue," the state transitions to the
"review order" state. If the user goes
back, the state transitions back to the
"enter shipping information" state.

• In the "review order" state, the user can
review their order details and either
confirm the purchase or go back to the
previous step. If the user confirms the
purchase, the state transitions to the
"order confirmation" state. If the user
goes back, the state transitions back to
the "enter payment information" state.

• In the "order confirmation" state, the user
sees a confirmation message and has the
option to start a new order or return to
the homepage.

© 2023 Accion Labs

E-Commerce App - Checkout State Machine

© 2023 Accion Labs

Su
m

m
ar

y

© 2023 Accion Labs

• Frontend evolution and the key problem areas

• Conventional approaches to tackle the problems.

• Innovative approach to solve the problems.

• Use cases and application areas.

© 2023 Accion Labs© 2023 Accion Labs

Demo

© 2023 Accion Labs

Thank You!

vaibhav.satam@accionlabs.com

kejal.shah@accionlabs.com

